W1DBM spent his summer designing and testing two-band vertical antennas via his computer. This summer we can enjoy the fruits of that labor plus get some time in on our computers.

Designing A Two-Band Loaded Vertical Antenna

BY PHILIP S. RAND*, W1DBM

have used a two-band vertical phased array quite successfully for the past few years. This antenna consists of four 20 meter verticals with a 40 meter mobile resonator mounted on the top of each element. The idea occurred to me that it should be possible to redesign this antenna for use on other frequencies and for other purposes such as mobile whips, travel-trailer antennas, or low-frequency DX verticals.

After considerable researching of engineering handbooks and back issues of amateur magazines, in the September 1974 issue of QST I found an article entitled "Off-Center-Loaded Dipole Antennas" by Jerry Hall, K1PLP. A $1 / 4$-wave vertical, of course, is one half of a dipole. Therefore, all that would be necessary is to cut the overall length in half and wind only one loading coil. It was worth a try. However, the gigantic mathematical equation in this article (fig. 1) almost frightened me away. Since I had a computer, though, I figured if I could get the formula into a workable program I would be home free.

Another article was found in CQ magazine, December 1981 by Dick Sander, K5QY, entitled "A Computer-Designed Loaded Dipole Antenna." This article lists a program for an Apple II computer that puts Jerry Hall's formula into a workable form, and some useful ideas were obtained from it.

Jerry's article describes the design of a dipole that is considerably shorter than normal (you select the length that you have available). It then calculates the necessary inductance for a pair of loading coils to make it resonate at the desired frequency. You must select the distance, "B," from the center insulator to each loading coil. Considering one half of the dipole, if you choose " B " as $1 / 4$ wave at a higher frequency, you will have a twoband, $1 / 4$-wave vertical antenna.

Fig. 2 shows a diagram of the loaded

[^0]

Fig. 1- The program formula from Jerry Hall's article "Off-Center-Loaded Dipole Antennas," which appeared in QST, September 1974.
vertical. Note that the overall height, " H ," resonates at a low frequency, while the length below the loading coil resonates at a higher frequency. This design requires that the overall height be less than $1 / 4$ wavelength at the lower frequency , and that the part below the loading coil be $1 / 4$ wavelength at the higher frequency. The overall length, of course, must be longer than a $1 / 4$ wave at the higher frequency. The loading coil must have enough inductance so that it will act like an RFC on the higher frequency and isolate the lower part of the antenna, while acting like a loading coil to resonate the entire antenna at the lower frequency. A good radial ground system will be necessary under the antenna for best results.

The Equation

The equation in QST is rather cumbersome to handle in its present form (see fig. 1). It is much easier to enter into the computer if you first divide it algebraically into several logical sections, calculating each separately and then recombining them later. Also, two parts of the equation are each used twice, so they are also calculated separately. Their values have
been assigned to the variables "DD" and "GG." "F" is the lower frequency. "F2" has been added as the higher frequency. " $F 2$ " is used to determine the length " B " in fig. 2 automatically $\left(B=246^{*} \mathrm{~K} 1 / \mathrm{F} 2\right.$ where $\mathrm{K} 1=\mathrm{K}+.04$). " K " is calculated from the ratio of the length to the diameter of the total antenna, while the " .04 " was derived experimentally to compensate for the inductance of the loading coil that replaces the capacity of an end insulator. "D" is the diameter of the radiating element in inches. The computer program has a wire table built in so that the uH of the loading coil will be correct for any diameter of radiating element. You may enter either the diameter of the antenna or the wire gauge. You can therefore use this program to design a twoband ground-plane antenna with a largediameter radiator as well as a wire vertical hung from a tree or a wooden pole.

The QST article only calculated the inductance in uH of the loading coils. Of course, you must wind these coils (see fig. 3). It is necessary, therefore, to find out the number of turns, wire size, length, etc. To determine the physical size of a single-layer air-wound coil where "EQ" equals inductance, the following formula
is entered into the computer program: "Inductance equals the number of turns, squared, times the coil radius, squared, divided by 9 times the radius plus 10 times the coil length," where $\mathbf{N}=$ number of turns, $\mathbf{A}=$ coil radius in inches, \mathbf{B} $=$ coil length in inches, and EQ = inductance in uH .

Rearranging the formula to solve for the number of turns and putting it into computer format, the formula becomes:

$$
" N=\operatorname{SaR}\left(E Q^{*}\left(9^{*} A+10^{*} B\right)\right) / A^{\prime \prime}
$$

where $\operatorname{SQR}=$ square root, ${ }^{*}=$ multiplication, and $/=$ division. Since B is unknown, we enter $B=5$ inches as a starter, and then "iterate" the equation 12 times, each time entering a new value for " B " by recalculating " B " = number of turns divided by turns-per-inch (for the size wire that you have selected). The number of turns-per-inch = "WW' and therefore, " $\mathrm{B}=\mathrm{N} / \mathrm{WW}$." Usually, by the seventh or eighth iteration we have an accurate figure for both " N " and " B " and can proceed to wind the coils.

Practical Designs

To prove out this method of designing two-band shortened verticals, I have constructed several such verticals and have measured both the inductance of the computer designed coils and the s.w.r. of the finished antennas. In general, the

Fig. 2- Diagram of a two-band loaded vertical antenna.

LEGEND

$A=$ Coil radius ($D / 2$)
B $=$ Coil length
$\mathrm{D}=$ Coil diameter
$\mathrm{N}=$ Number of turns
$E \mathrm{E}=$ Inductance $(\mu \mathrm{H})$
Fig. 3- Loading-coil winding criteria.

ANTENNS \& TOWERS

cushcrafी

A3 3-element $10-15-20 \mathrm{~m}$ Triband R3 $10-15-20 \mathrm{~m}$ Vertical 269.95 214B SSB/214FB FM 2m Boomers ARX-2B 2 m Ringo Ranger
A3219 2m Boomer
410B 10-element $432-435 \mathrm{MHz}$ 424B 24 -element $435-437 \mathrm{MHz}$ $10-4 C D$ 4-element 10 m 15-4CD 4 -element 15 m $40-2 C D$ 2-element 40 m Other Cushcraft models available 269.95
.77 .95 .77 .95
.36 .50 .36 .50
.90 .95 .90 .95
.54 .95 .54 .95

.76 .95 104.95 | 104.95 |
| :--- |
| 118.95 |
| 279.95 |

TELEX hy-gain

391S TH7DX 7-ele $10-15$-20m Triband ... 412.95 3933 THSDX 5 -ele $10-15-20 \mathrm{~m}$ Triband 412.96
355.95
269.95 $395 S$ Explorer $1410-15-20 \mathrm{~m}$ Triband 203 3-element 2-meter Beam 269.96
.16 .95 208 8-element 2 -meter Beam .16 .95
.28 .95 214 14-element 2-meter Beam 28.95
.34 .75 BNB6 Beam Balun 2 -meter Beam
V2S 2-meter Vertical 16.50
.37 .50

V4S 440 MHz Vertical
Other Hy-Gain models available
55.95

KT34A 4 -element $10-15-20 \mathrm{~m}$ Triband. .337 .95
485.95 KT34XA 6-element $10-15-20 \mathrm{~m}$ Triband 2M-13LBA 13 -element 2 -meter 485.95
78.95 432 -16LB 16 -element 430 MHz 78.95
64.95 CS-2 Polarity Switcher 64.95
.50 .95

CL-33 3-element Triband Beam TA-33 3-element $10-15-20 \mathrm{~m}$ Triband Pro 37 7-element $10-15-20 \mathrm{~m}$ Triband 269.95
242.95 RV-4C $10-40 \mathrm{~m}$ Vertical
242.95 468.95 CALL

HUSTIER

6-BTV $10-80 \mathrm{~m}$ Vertical with 30 m
 5-BTV 10-80m Vertical $\begin{array}{r}126.95 \\ \ldots107 .95 \\ \hline . . .18 .95\end{array}$ 4-BTV $10-40 \mathrm{~m}$ Vertical
MO-1/MO-2 Mast
BM-1 Bumper Mount
G6-144B 2-meter Base Vertical
G7-144 2-meter Base Vertical G6-440 440 MHz Base Vertical MOBILE RESONATORS 10 and 15 meter 10 and 15 m
30 and 40 meters
75 meters.
AEA ISOPOLES
144 2-meter Antenna
220220 MHz Vertical 440440 MHz Vertical
MORE ANTENNAS
AVANTI HM 151.3 G 2 m On-glass LARSEN LM-150 5/8 Mag Mount MINIQUAD HQ-1
BUTTERNUT HF6V $10-80 \mathrm{~m}$ Vertical BUTTERNUT 2MCV5 2 m 84.95
. 19.95 VOCOM $5 / 8$-wave 2 m Handheld
 Standard
antennas for oscar
Cushcraft 416TB Twist.
Cusheraft A14410T 10-ele
Cushcraft A14420T 20 -ele
Cushcraft AOP1 Package
KLM $2 \mathrm{~m}-14 \mathrm{C} 2 \mathrm{~m}$ 14-ele Circular
KLM 435-18C 18 -ele Circ Polar

$\begin{array}{r} 58.95 \\ \ldots \quad 48.95 \\ \ldots 69.95 \\ .139,95 \\ .88 .95 \\ \ldots .65 .95 \end{array}$

a) a a inc.

Prices subject to change without notice or obligation

13646 Jefferson Davis Highway Woodbridge, Virginia 22191 (703) 643-1063

Order Hours: M-F 11 a.m.-7 p.m
Saturday 10 a.m. -4 p.m.

6 Unarco-Rohn

Self-supporting towers:	
HBX40 40-feet with Base	201.60
HBX48 48-feet with Base	276.20
HBX56 56 -feet with Base	350.00
HDBX40 40-feet/higher load	253.95
HDBX48 48 -feet/higher load	344.30
Guyed foldover towers:	
FK2548 48-feet, 25G	825.00
FK2558 58-feet, 25G	891.00
EK2568 68-feet, 25G	924.00
FK4544 44-feet, 45G	1155.00
FK4554 54-feet, 45G	1254.00
FK4564 64-feet, 45G	1353.00
Foldovers shiped freight paid.10% higher west of the Rockies.	
Straight Sections:	
20G Straight Section	33.85
20AG Top Section	37.45
25G Straight Section	47.25
25AG 2, 3, 4 Top Section	60.75
45G Straight Section	. 110.10
45AG 3,4 Top Section	120.15
25G Foldover Double Guy Kit	. 306.00
45G Foldover Double Guy Kit	. 324.00

TELEX hy-gain

HG37SS 37-feet tall 627.95
HG52SS 52 -feet tall 903.95

HG54HD 54-feet/higher load 1468.95

HG70HD 70-feet/higher load 2323.85

Shipped freight paid. Order Hy-Gain tower.
Hy-Gain antenna, and Hy-Gain rotor to receive free shipping on all.

W36 36 -feet tall
.549 .00
WT51 51-feet tall
929.00

LM354 54 -feet/higher load
1575.00

DX86 86 -feet/motor/highest load Call
Shipping not included. Shipped direct from factory to save you money.
TOWER ACCESSORIES
3/16" EHS Guywire
$18^{4} / \mathrm{ft}$
$1 / 4^{\prime \prime}$ EHS Guywire
$3 / 8 \times 6$ Turnbuckle
$1 / 2 \times 12$ Turnbuckle
$1 / 2 \times 12$ Turnbu
Insulators 504
Insulators $504 . .$.
$1 / 2 \times 12$ Base Bolt
$3 / 4 \times 12$ Pier Pin.
950
..... 3.60

ROTORS
Alliance HD73 97.95
Hy-Gain CD45 II $1 . . .$.
Hy-Gain Ham IV
195.95

Hy-Gain Tailtwister T2X
195.95
245.95

Hy-Gain Heavy-duty 300
CABLE BY SAXTON
RG213 Mil Spec
474.95

RG8/U Foam 95\% Shield
8-wire Rotor 2 \#18, 6 \#22
Mini-8
. $29^{8} / \mathrm{ft}$

CALL
PACKAGES
Call for Special
Pricing on Tower/ Antenna Packages
Ask for Don

Orders \& Quotes Toll Free: 800-336-4799
In Virginia: 800-572-4201

ADAPTABILITY

ROHN has several sizes to fit your applications or you can purchase the "Foid-Over" components to convert your ROHN tower into a "Fold-Over".

HOT DIP GALVANIZED

All ROHN towers are hot dip galvanized after fabrication.

REPUTATION
 ROHN is one of the leading tower manufacturers, with over 25 years of experience.

Write today for complete details.

QUALITY STEEL PRODUCTS BY

ROHN
Box 2000 Peoria. Illinois 61656 U.S.A.
coils measured very close to the design inductance. Any difference was attributable to the unknown dielectric of the coil form (plastic water pipe). The lowest s.w.r. was not quite on the design frequency. This was attributable to ground conditions and to the proximity of nearby objects. With a small amount of pruning, it was possible to get all antennas down to an s.w.r. of less than 1.3/1 at the design frequency. The bandwidth for the higher frequency verticals was normal. As expected, the bandwidth of the lower frequency verticals decreased in proportion to the amount of shortening.

Antenna No. 1

This is a two-band travel-trailer antenna designed for use on the 20 and 40 meter Recreational Vehicle Service Nets on 7234 and 14308 kHz . A height of 20 feet was chosen for the vertical, which was mounted on my Airstream's rear bumper. The following data was entered into the computer:
$F=7.2 ; F 2=14.3 ; H=20 ; D=.625$ (average dia. of mast, 10 ft . each of $1 / 2 \mathrm{in}$. and $3 / 4 \mathrm{in}$. electrical conduit).

The computer said we needed a coil of 35.3 uH and that it should be placed 17.72 ft . above the bottom. Next we entered the coil diameter in inches and the size of the wire we planned to use.
$D=1.0 \mathrm{in} . ; \mathrm{WW}=14$-gauge enameled magnet wire.

The computer calculated the following data for the loading coil:

Coil length $=6.69 \mathrm{in}$.
No. of turns $=100.4$ using No. 14 enameled wire close-wound. (An 8 in. length of 1 in. dia. plastic water pipe was used for the form).

Antenna No. 1 performed well. The bandwidth on 40 meters was quite a bit narrower than a full-size vertical due to its shorter length. The 20 meter bottom section resonated close to the design frequency and worked like any other 20 meter ground-plane.

Antenna No. 2

This two-bander was for 3.9 and 21.3 MHz with an overall height of 15 ft . and a diam. of 1.25 in . (TV masting). The computer calculated the bottom-to-coil distance as 11.9 ft . and the coil inductance as 92.9 uH . It was decided to use a 12 in . length of 1.5 in . dia. plastic pipe for the coil form. The coil length is 9.05 in . wound with 126.8 turns of No. 20 insulated hookup wire.

Antenna No. 2 had a much narrower bandwidth than a normal-size dipole on 75 meters due to its much shorter overall length. It did, however, have a better bandwidth than a mobile whip with only a 5 ft . bottom section, and it also got out much better. On 15 meters it appeared to function normally. Slight pruning was required to get the s.w.r. down to a low value, especially on 75 . For solid-state rigs a "match-box" solves the s.w.r.

Fig. 4- A two-band, low-frequency DX antenna. See "Antenna No. 3" section for details.
problem when QSYing too far from the design frequency.

Antenna №. 3

This is a two-band, low-frequency DX antenna. A wire version of this antenna has been tested in a horizontal position as a dipole and should work much better in the vertical position if a suitable ground-plane is provided.

Frequencies: 1.82 and 3.8 MHz
$\mathrm{H}=70 \mathrm{ft}$. (total height)
$\mathrm{D}=8 \mathrm{in}$. (tower, 8 in . to a side)
Coil dia. $=4 \mathrm{in}$. plastic drain pipe
Coil wire $=$ No. 14 insulated house wire
The computer says: mount the loading coil 66.03 ft . from the bottom (see fig. 4). The coil should be $144 \mathrm{uH}, 59$ turns with a winding length of 7.9 in . The top section should be long enough to make the total height 70 ft . Adjust bottom length for lowest s.w.r. on 3.8 and then the top section for lowest s.w.r. on 1.82.

Computer Program

The program is made up of a bunch of numbered lines telling the computer in numerical sequence what you want it to do. Lines 10 through 200 ask you to input data such as frequencies, overall length, "want to use wire table?" etc. The actual computation starts at line 200. A "GOSUB 1280" statement sends the computer to line 1280, a sub-routine, to calculate the value of " K " from the length-to-diameter ratio. It then returns to line 210 to calculate the value of "B," the length of the higher frequency vertical.

Program Listing

10 CLS
29 FRINT" A PROGRAIM FOR
30 PRINT" DESIGHING A 2-BAMD SHORTENED"
40 PRINT" AND LOADED VERTICAL ANTENMA.
48 PRINT" AND LOADED YERTICAL RNTENNA,
50 PRINT" WRITEEN BY PHI
60 PRINT" JULY 15,1983
60 PRINT" JULY 15, 1983
70 PRINT" ENTER A FREO. IN LONER BAMD:
80 INPUT F
99 PRINT" ENTER A FREQ. IN HIGHER BRIND "
100 INPUT F2
118 PRINT" ENTER OVERALL VERT. RNT. HEIGHT"
120 INPUT H
$130 \mathrm{~A}=2$ * H
140 PRINT" WANT TO USE RINT. WIRE TRBLE? RINSWER ' Y ' OR 'N''
150 INPUT Y
160 IF $Y \$=$ " Y " THEN 1090
170 IF $Y=" N$ " THEN 1248
170 IF Y $\$=" N "$ THEN 1240
180 IF Y $\$ \ggg$ "Y" THEN 159
180 IF Y\& 190 IF $\$\langle\gg$ "N"THEN 150
200 GOSUB 1280
$210 \mathrm{~B}=246 * \mathrm{~K} 1 / \mathrm{F} 2$
228 SL=B
$230 \mathrm{PI}=3.1416$
$240 \mathrm{AR}=10^{\wedge} 6 /\left(68 * P I^{\wedge} 2 * F^{\wedge} 2\right)$
$258 \mathrm{DD}=234 / \mathrm{F}-\mathrm{B}$
$268 \mathrm{GG}=\mathrm{F} / 2-8$
$270 \mathrm{BB}=\mathrm{LOG}(24 * D D / D)-1$
$288 C C=(1-F * B / 234)^{\wedge} 2-1$
$298 E E=\operatorname{LOG}(24 \pi G G / D)-1$
$398 \mathrm{FF}=\left(\mathrm{F} \neq \mathrm{G} \mathrm{C}\right.$-234) ${ }^{\text {n }}$
$316 E G=A R *(B B * C C$-DD)-(EE*FE/GG))
$328 \mathrm{EQ}=\mathrm{INT}$ CEQ* $160+.5) / 180$
330 PRINT
348 CLS
350 PRINT" INDUCTRNCE OF THE LORDING COIL IS"EQ"UH."
360 PRINT"** CALCULATIMG SIZE OF COIL 林
370 PRINT" ENTER DIR. OF LORDING COIL""
380 INPUT DL
$390 \mathrm{~A}=\mathrm{DL} / 2$
$400 \quad \mathrm{~B}=5$
428 PRINT" ENTER THE WIRE GRUGE OF THE COIL, 12 TO $16 . "$
438 REM-
448 PRINT"
440 PRINT" 450 PRINT" ENTER ' 1 ' FOR B*W 10 TURNS PER INCH COIL STOCK."
460 PRINT" ENTER ' 2 ' FOR NQ. 12 GR. INSULATED HOUSE WIRE."
47 P PRINT" ENTER ' 4 ' FOR NO. 14 GR. INSULATED HOUSE WIRE."
480 PRINT" ENTER ' 6 ' FOR NO. 20 INSULATED HOOK -UJP WIRE.
490 INPUT W
508 IF $W=1$ THEN WW $=18$
518 IF $W=2$ THEN $W W=6.5$
528 IF $\omega=4$ THEN $W \omega=7.5$
520 IF $W=4$ THEN $W=6=1$ THEN $^{\circ}$
530 IF $W=6$ THEN $W W=14$
540 IF $W=12$ THEN $W \omega=12$
550 IF $W=13$ THEN $W W=13.5$
560 IF $\omega=14$ THEN $W \omega=15$
570 IF $\omega=15$ THEN $W d /=16.8$
580 IF $W=16$ THEN $W \omega=18.9$
590 CLS
G00 PRINT" < ITERRTING FORMULA >"
610 PRINT TRB(7)"TURNS"; TRB(15)"LENGTH"
$620 x=1$
630 FOR $I=1$ TO 12
$640 \mathrm{~N}=\operatorname{SQR}^{2}(E Q *(9 * A+10 * B)) / A$
$650 \mathrm{~N}=1 \mathrm{NT}(\mathrm{N} * 100+.5) / 100$
$650 \mathrm{~B}=$ INT $\mathrm{B} * 100+.5) 1108$

678 RRINT"NO
$680 \mathrm{~B}=\mathrm{N} /$ Wh
$690 \mathrm{~B}=\mathrm{INT}(\mathrm{B} * 100+.5) / 100$
$700 \quad \mathrm{X}=\mathrm{X}+1$
710 NEXT I
728 PRINT" 7 PRESS ENTER/RETURN"
738 INPUT C
748 CLS

770 PRINT" FREQ, S RRE: "F"RND"F2"MHZ
790° PRINT HT OF WERT FNI. IS"H"FEET"
798 SL =INT (SL $\div 109+.5$) 180
800 PRINT" LENGTH FROM BOTTOM OF ANT. "
810 PRINT" TO COIL IS"SL"FEET."
828 TL=H-SL
PRINT LENGTH-TOP SECTION. TLTFT.
850 PRINT" DIA. OF COIL IS"DL"INCHES."
860 PRINT" LENGTH OF COIL IS"B"IN."
BTO PRINT NO. OF TURNS-PER-IN. IS 'Wh
880 PRINI" TOTAL NO. OF TURNS IS" ${ }^{\prime} \mathrm{N}^{\prime}$
890 IF $W=1$ THEN 960
910 IF $W=4$ THEN 1020
920 IF W=6 THEN 1050 "USE ENAGMMELED MAGMET"
940 PRINT" WIRE FOR WINDIND COIL."
950 GOTO 1089
OST SRI USE B\&W 10 TURNS-PER-INCH COIL
S7a PRINF STOCK FOR THE COIL.
998 PRINT" USE NO. 12 INSULRTED HOUSE WIRE
1000 PRINT" FOR THE COIL."
1810 GOTO 1889
1020 PRINT" USE NO. 14 INSULRTED HOUSE WIRE"
1039 PRINT" FOR THE COIL."
1049 GOTO1089
1050 PRINT" USE H0. 20 INSULATED HOOK-UP"
1069 WIN FOR THE COIL.
1980 END
1090 PRINT ENTER ANT, WIRE GR.t in T1 16 ,
100 FRINT" IN EVEN NUMBERS.
1110 INPUT GA
1120 IF $G A=10$ THEN $D=.1019$
1130 IF GAK >10 THEN 1150
1150 IF $G A=12$ THEN $D=.0898$
1160 IF GA<>12 THEN 1180
1178
118
IF $G A=14$ THEN $D=.064$
1190 IF GA<>14 THEN 1210
1210 IF $G A=16$ THEN $D=$. Q5
1228 IF GAK >16 THEN 1248
1240 PRINT" ENTER RNT, ELEMENT DIR. IN IN. ${ }^{*}$
1250 INPUT D
1270 REM L=ANT. LENGTH IN FT.
1280 L=A
$1390 \mathrm{R}=\mathrm{L} / \mathrm{DF}$
1310 IF $\mathrm{R}<5.8$ THEN $K=.98$
1330 IF $\mathrm{R} \subset 8$ THEN $K=.91$
1340 IF $K=.91$ THEN 1480
1350 IF $R<13$ THEN $K=92$
1370 IF Rくi7 THEN K $=93$
1380 IF $K=.93$ THEN 1480
1390 IF R<25 THEN $K=.94$
1400 IF $\mathrm{K}=.94$ THEN 1480
1420 IF $\mathrm{K}=.95$ THEN 1480
1430 IF R<258 THEN $K=.96$
1458 IF $\mathrm{R}<5008$ THEN $K=.97$
1460 IF $K=.97$ THEN 1480
1478 IF $\mathrm{R}=>5000$ THEN $\mathrm{K}=.98$
$1488 \mathrm{~K} 1=\mathrm{K}+.04$
1498 RETURN REM (TO 398)

Next it starts the calculation of the load-ing-coil inductance by defining the values of the numeric variables: $B=246$ * $\mathrm{K} 1 /$ $\mathrm{F} 2 ; \mathrm{SL}=\mathrm{B} ; \mathrm{PI}=3.1416 ; \mathrm{DD}=234 / \mathrm{F}$ $-B ; G G=A / 2-B$. The actual equation for the inductance starts at line 240 and has been broken down into:

$E Q=A A^{*}\left(\left(B B^{*} C C / D D\right)-\left(E E^{*} F F / G G\right)\right)$

where $E Q$ is in $u H$ and $A A, B B, C C, D D$, EE, FF, and GG are parts of the original equation (fig. 1).

Designing The Coil. Lines 420 to 560 give you your choice of a number of different kinds of wire for winding the coil. Lines 580 to 710 give the computer instructions
for "ITERATING" the no.-of-turns equation:

$N=\operatorname{SQR}\left(E Q *\left(9 * A+10^{*} B\right)\right) / A$

Computer Printout. Lines 730 through 1060 tell the computer to display the results on the TV screen. Lines 1100 to 1260 contain the antenna wire table.

Program Listing. In the accompanying program listing, whenever you see a line containing "CLS", (command to "CLEAR THE SCREEN"), you must change it to one of the following, depending upon your brand of computer. For example, if you own an:

Apple II-change "CLS" to "HOME"

Vic-20-change "CLS" to "PRINT "CLR/HOME" "

TI-99/4A-change "CLS" to "CALL CLEAR"

For the Timex-Sinclair, IBM, and TRS-80- "CLS" is okay.

This complete program requires only about 3.5 K of usable RAM and the use of LOGs. (Extended BASIC required for the TRS-80 Color Computer and the T199/4A.) It may be run on a Vic-20 with 3583 BYTES FREE. You will need extra memory for the Timex/Sinclair, which also requires the addition of the word "LET" when assigning values to numeric variables. (For example: $210 \mathrm{~B}=246^{*} \mathrm{~K} 1 / \mathrm{F} 2$, becomes 210 LET $B=246 * K 1 / F 2$, etc.)

[^0]: *P.O. Box 8, Haverhill, NH 03765

